
Breaking KeeLoq in a Flash⋆

-On Extracting Keys at Lightning Speed-

Markus Kasper, Timo Kasper, Amir Moradi, and Christof Paar

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{mkasper, tkasper, moradi, cpaar}@crypto.rub.de

Abstract. We present the first simple power analysis (SPA) of software
implementations of KeeLoq. Our attack drastically reduces the efforts
required for a complete break of remote keyless entry (RKE) systems
based on KeeLoq. We analyze implementations of KeeLoq on micro-
controllers and exploit timing vulnerabilities to develop an attack that
allows for a practical key recovery within seconds of computation time,
thereby significantly outperforming all existing attacks: Only one single
measurement of a section of a KeeLoq decryption is sufficient to extract
the 64 bit master key of commercial products, without the prior knowl-
edge of neither plaintext nor ciphertext. We further introduce techniques
for effectively realizing an automatic SPA and a method for circumvent-
ing a simple countermeasure, that can also be applied for analyzing other
implementations of cryptography on microcontrollers.

1 Motivation

Due to its wide deployment in RKE systems, the KeeLoq cipher has come to
the attention of cryptographers in 2007 [1]. Several improved cryptanalytical
attacks followed, but still, their complexity and other requirements make them
impractical for real-world products.

This situation extremely changed with the first differential power analysis
(DPA) of KeeLoq as presented on CRYPTO 2008 [5]. The paper describes
how secret keys can be revealed in practice from the power consumption of
KeeLoq implementations in hardware and software. In Sect. 3.3 we reflect, how
especially knowing his master key allows for devastating attacks on all systems of
a manufacturer. Unfortunately - from the attacker’s point of view - the extraction
of the master key remains difficult and requires some efforts, because the software
implementations programmed into the receivers are very hard to analyze using
DPA, as discussed in Sect. 4.

We illustrate in the following, that in some cases performing a key recovery
by SPA is much easier and much more efficient than by DPA, and demonstrate
that SPA constitutes a remedy for the open problem of extracting the master key
from KeeLoq software implementations. Starting from a specific unprotected
software implementation of the algorithm - as recommended by Microchip - we

⋆ The work described in this paper has been supported in part by the European Com-
mission through the ICT programme under contract ICT-2007-216676 ECRYPT II.

develop a highly effective SPA attack in Sect. 5. Usually, an SPA is performed
based on tedious visual inspection, as detailed in Sect. 5.2, or by massive profiling
of a similar device, which takes a lot of efforts and time. In Sect. 5.3, a non-
heuristic method to avoid the visual inspection in some types of SPA attacks
is presented, enabling a full key recovery from just a single measurement of
the power consumption. We practically verify our findings by attacking some
commercial KeeLoq implementations on PIC 8-bit microcontrollers and proof
the effectiveness of our methods, even in the presence of a simple countermeasure.
Removing the effect of reoccurring disturbing patterns in the traces, that hinder
DPA and SPA in the first place, is detailed in Sect. 6. Before developing our new
attack, we give some necessary background information about power analysis
in Sect. 2 and briefly introduce KeeLoq RKE systems in Sect. 3. Finally, the
effectiveness of DPA and SPA in the case of KeeLoq is discussed in Sect. 7.

This article meliorates the CRYPTO 2008 attacks in terms of a great reduc-
tion of the required time and computations to recover secret master keys of dif-
ferent manufacturers and hence allows to completely circumvent many KeeLoq

systems in the field with almost no effort.

2 Power Analysis in a Nutshell

In contrast to a mathematical cryptanalysis which requires pairs of plain- and ci-
phertexts, in the context of power analysis knowing either the input or the output
of the cipher is sufficient to mount a key-recovery attack. By measuring and eval-
uating the power consumption of a cryptographic device, information-dependent
leakage is exploited and combined with the knowledge about the plaintext or ci-
phertext in order to extract, e.g., a secret key. Since intermediate results of the
computations can be derived from the leakage, e.g., from the Hamming weight of
the data processed in a software implementation, a divide-and-conquer strategy
becomes possible, i.e., the secret key could be recovered bit by bit.

2.1 Preprocessing

For unknown implementations, it is often difficult to find an appropriate trigger
point for starting the oscilloscope, e.g., a special feature in the traces, that re-
occurs at the same instant in each measurement. Accordingly, the alignment of
the measurements typically needs to be improved as a first preprocessing step
after the acquisition. Furthermore, traces can be very large or too noisy for an
effective evaluation – thus they might need to be compressed or averaged prior
to statistical analysis.

Peak Extraction The dynamic power consumption is the dominant factor dis-
closing the processed data of complementary metal oxide semiconductor (CMOS)
circuits. The corresponding peaks appearing in the measurements on each edge
of the clock hence play a prominent role for power analysis. Processing only the
amplitudes of these peaks - instead of all acquired data points - allows for a great

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re

sq
ua

re
sq

ua
re

sq
ua

re

m
ul

tip
ly

m
ul

tip
ly

m
ul

tip
ly

m
ul

tip
ly

m
ul

tip
ly

m
ul

tip
ly

m
ul

tip
ly

1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0

Fig. 1. SPA of an implementation of RSA.

reduction of computations and memory required during the analysis. Moreover,
misalignments arising from a clock jitter due to an unstable oscillator in the
cryptographic device are eliminated by peak extraction.

Averaging In case of a bad quality of the acquired power consumption, e.g., due
to a noisy environment, bad measurement setup or cheap equipment, averaging
can be applied by decrypting the same ciphertext repeatedly and calculating
the mean of the corresponding traces. This method reduces the noise floor and
can enormously increase the signal-to-noise ratio of the power traces. As exactly
the same input data is processed, the measurements can be accurately aligned
using a cross-correlation between two full traces. Comparing (averaged) traces
for different ciphertexts can help to find the time-window in the traces, where a
data-dependent behavior occurs and hence the decryption takes place.

2.2 Simple Power Analysis

An SPA attack, as introduced in [7], relies on visual inspection of power traces,
e.g., measured from an embedded microcontroller of a smartcard. The aim of an
SPA is to reveal details about the execution path of a software implementation,
like the detection of conditional branches depending on secret information. At
first, implementations of RSA were in the focus of the attackers, because an SPA
of them is rather straightforward. A typical modular exponentiation comprises
two main function calls, i.e., “square” and “multiply”. The execution time for
processing a zero or one can often be distinguished visually from the power
traces, as illustrated for an 8051-based microprocessor in Fig. 1. Obviously, an
attacker can directly recover the secret exponent of the RSA encryption from
the sequence of instructions visible in the measurements.

2.3 Differential Power Analysis

Contrary to SPA, DPA takes many traces with often uniformly distributed
known plaintexts or known ciphertexts into account and evaluates them with
statistical methods. A DPA requires no knowledge about the concrete imple-
mentation of the cipher and can hence be applied to any unprotected black box

implementation. The points in time where secret information leaks during the
execution of the cipher are an outcome of a DPA [7]. The traces are divided into
sets according to intermediate values depending on key hypotheses and then
statistically evaluated, e.g., by calculating the mean for each point in time of
all traces of each set. The probability for a zero or one being processed should
be uniformly distributed in each set, and thus the difference of the means will
vanish, except for the set belonging to the correct key hypothesis.

In a correlation power analysis (CPA), each point in time for all measure-
ments is compared to a theoretical model of the implementation by calculating
the correlation coefficient. A maximum correlation between the hypothetical
power consumption and actually measured power values indicates the correct
key hypothesis [2].

3 KeeLoq RKE Systems

An RKE system consists of one receiver in the secured object and one or more
remote controls that can send transmissions to the receiver and thereby control
the access to the object. The early fixed-code or multi-code systems1 were devel-
oped soon after digital circuitry became available. They rely on sending a fixed
sequence of binary data when pressing the remote, and permit access in case
the code is correctly identified. The obvious need for a protection against replay
attacks, with only an unidirectional channel available, brought the invention and
wide deployment of so-called hopping code systems. KeeLoq RKE systems typ-
ically employ hardware implementations of the cipher, such as HCSXXX [10],
for generating hopping codes in the remote controls and a software implementa-
tion running on an 8-Bit PIC microcontroller [11] in the receiver to decrypt the
transmissions.

3.1 Hopping Code Scheme

The remote control possesses an internal counter that is increased each time one
of its buttons is pressed. The increased value is then encrypted and transmitted
as a hopping code. For each remote, the receiver stores the counter value of the
last valid transmission and updates the counter only upon decryption of a valid
hopping code with a moderately increased counter value. The receiver is thus
capable of rejecting repetitious codes and can thereby prevent replay attacks
(except if combined with jamming, see Sect. 3.3). Extra remotes can usually be
made known to the receiver by putting it into a learning mode in which the key
of the extra remote is derived and stored.

Key Management Microchip suggests several key derivation schemes for gen-
erating a unique device key Kdev for each remote control. All of these schemes
involve a secret manufacturer key Kman that is used once in the factory for a

1 Note that even these outdated systems are still available on the market

freshly produced remote control, and later in the receiver when the key deriva-
tion takes place. This global master key for the RKE system is of course stored
securely in the memory of the microcontroller.

For the most widespread key derivation in practice, the device key is a func-
tion f of the identifier ID (serial-number) of the remote control. The ID is no
secret, because it is transmitted unencryptedly with every hopping code. Any
party knowing the manufacturer key Kman, e.g., the receiver, is hence capable of
calculating Kdev = f (Kman, ID). For the key-derivation function f, Microchip
proposes KeeLoq decryptions with Kman [9], as described in Sect. 3.2. Even
if a Kdev and the corresponding ID are known, a straightforward inversion of
f is impossible. The described scheme for the key-derivation enables different
business models, as the receivers of one manufacturer will only cooperate with
remotes of the same manufacturer and thus prohibit a competitor from selling
spare remotes.

3.2 KeeLoq Decryption

The decryption algorithm described in the following is used both for deciphering
the hopping codes and during the key-learning phase – note that the software
in a receiver never encrypts data. Prior to a decryption employing the KeeLoq

block cipher, a 32-bit state Y = {y0, . . . , y31} is initialized with the ciphertext
C. After 528 rounds of the decryption involving a secret key K = {k0, . . . , k63}
of length 64 bits, Y contains the plaintext P .

Details of the Cipher In each round i, one key bit k(15−i) mod 64 is XORed
with two bits of the state and the output bit of a non-linear function (NLF)
that combines five other bits of the state. Afterwards, the state is shifted left,
such that the most significant bit (MSB) y31 is dropped, and the output of the
XOR becomes the new least significant bit (LSB) y0. The details of the cipher

Algorithm 1 KeeLoq Decryption (Pseudo Code)

Input: ciphertext C = {c0, . . . , c31}, key K = {k0, . . . , k63}
Output: plaintext P = decK(C), where dec denotes KeeLoq decryption with K

1. Load ciphertext: Y = C

2. For i = 0 to 527 do

2.1. Output bit of NLF: OUT = NLF(y30, y25, y19, y8, y0)
2.2. Output bit of XOR: XOR = k(15−i) mod 64 ⊕ y31 ⊕ y15 ⊕ OUT

2.3. Update state
2.3.1. left-shift state: Y = (Y << 1)
2.3.2. assign LSB: y0 = XOR

3. RETURN Y

are given in Alg. 1, where ⊕ denotes a bitwise XOR. Note that each key bit is
reused at least eight times, i.e., every 64 rounds of the decryption.

The Non-Linear Function While the NLF could also be realized by means
of Boolean functions, performing table-look-ups as described in the following is
common practice. Defining a look-up table by the hexadecimal constant LUT =
0x3A5C742E, its j-th bit is equivalent to one output bit OUT of the non-linear
function NLF(x4, x3, x2, x1, x0). The index j ∈ {0, 1, . . . , 31} thereby equals the
decimal representation of the input bits x4 to x0, i.e., j = 24 · x4 + 23 · x3 +
22 · x2 + 21 · x1 + 20 · x0. The implementation of the NLF can be crucial for the
susceptibility to SPA, as will be shown in Sect. 5.

3.3 History of Attacks on KeeLoq

A common method for electronically breaking into cars secured with hopping
code systems is a combined eavesdropping-and-jamming attack: While the legit-
imate owner tries to lock his car with a remote control, the transmission is mon-
itored and at the same time the frequency of the transmission is jammed, with
the effect that the car won’t be locked and the attacker possesses a temporarily
valid hopping code. There are devices that automatically perform the described
process, but in practice they are rather unreliable. One successful transmission of
a new hopping code from the original remote to the car invalidates all previously
eavesdropped hopping codes.

Mathematical Analysis Recently, several cryptanalytic attacks on the KeeLoq

cipher have been published [3, 4, 6]. Without taking precomputed tables into ac-
count, the most efficient attack has a complexity of 248 and requires 216 plain-
and ciphertext pairs - hence KeeLoq has to be regarded as insecure from the
cryptographic point of view. Still, for a practical RKE system using hopping
codes the plaintext remains secret in the remote control, rendering the mathe-
matical attacks impractical.

Power Analysis and Eavesdropping Attack On CRYPTO 2008, a paper
demonstrates the Power of Power Analysis [5] by describing how the Kdev and
the master key Kman of commercial RKE systems based on KeeLoq can be
extracted by means of DPA.

Hardware implementations of KeeLoq, such as HCS301 [10] application-
specific integrated circuits (ASICs), are an ideal platform for conducting DPA
attacks. The timing behavior of the chip can be foreseen very precisely, as it al-
ways performs exactly the same digital operations independent of the secret key.
This implies that the power consumption at each point in time of the acquired
traces is always related to the same step of the KeeLoq cipher, and extracting
device keys Kdev with DPA is relatively straightforward. The authors of [5] re-
port a full key recovery of Kdev from less than ten measurements, in the best
case.

−0.2

0

0.2

round 1
−0.2

0

0.2

round 22

−0.2

0

0.2

round 43 −0.2

0

0.2

round 64

Fig. 2. Correlation coefficient of the correct key in a CPA attack on the software
implementation of the KeeLoq decryption running in a PIC microcontroller.

Extracting the manufacturer key Kman from software implementations turned
out to be orders of magnitude harder, as explained below in Sect. 4. When the
secret master key Kman gets into the hands of an attacker, two main implications
arise. Firstly, the attacker can produce fake products that are compatible with
those of that manufacturer - the monopoly of the manufacturer, e.g., him being
the only supplier of spare remote controls, collapses. Secondly, a remote control
of this manufacturer - including its secret device key Kdev - can be cloned by
monitoring a transmission from a distance, even without ever seeing the origi-
nal. With this powerful eavesdropping approach, even a low-skilled intruder can
spoof a KeeLoq receiver with technical equipment for less than US$ 50 and
take over control of an RKE system, or deactivate an alarm system, leaving no
physical traces.

4 Open Problem

The extraction of Kman from a software implementation of the KeeLoq decryp-
tion during the key-derivation mode of the receiver with DPA is much harder
than a DPA attack on a hardware implementation of the cipher - mainly for
two reasons. Firstly, lack of a suitable trigger point in the power consumption
of the microcontroller leads to extra steps required for a proper alignment when
preprocessing the traces. Secondly, as shown in Fig. 2, the correlation coefficient
of the correct key continuously decreases with an increasing number of rounds,
such that roughly 10 000 power traces need to be evaluated in order to fully
recover the 64-bit Kman - a huge effort compared to 5-30 traces for extracting
Kdev from hardware implementations. The authors of [5] predict that the cause
is a data-dependent execution time for each round of a KeeLoq decryption in
the program code.

4.1 Software Implementations of KeeLoq

Meanwhile, source code as proposed by Microchip for a PIC 8-bit microcontroller
has become available on the Internet [12]. Appendix A shows an excerpt of the
program code, revealing that the execution time of each round in the code ex-
ample varies depending on the processed data. In fact, most of the program code
takes the same amount of clock cycles, except for the specific implementation of

the look-up table to build the NLF (compare with Sect. 3.2). As a result, the ex-
ecution time of a decryption varies for different ciphertexts - a typical indicator
for a susceptibility towards an SPA.

5 SPA-Attacking KeeLoq

In this section first the mathematical aspects of our proposed SPA on KeeLoq

are illustrated; then, the effectiveness of visual inspection in practice is inves-
tigated for different platforms. Finally, a new method for performing an SPA
devoid of visual inspection, and empirical results from attacking commercial
products, are presented.

5.1 Mathematical Background

Let us denote the content of the state register during a KeeLoq decryption by a
bitstream S = {si ;−31 ≤ i ≤ 528}. When the first 32 bits {s−31, s−30, . . . , s0} of
the bitstream are initialized with the corresponding ciphertext bits {c31, c30, . . . , c0},
the bits with indices 1 ≤ i ≤ 528 can be computed according to step 2 of Alg. 1
using the iterative equation

sj+1 = k(15−j) mod 64 ⊕ sj−31 ⊕ sj−15 ⊕ NLF (sj−30, sj−25, sj−19, sj−8, sj) . (1)

According to Eq. (1), one bit of the secret key k(15−j) mod 64 can be revealed
from the knowledge of eight bits of the stream S. For extracting all 64 bits of
the key a consecutive section of the stream with 32+64 = 96 bits is sufficient to
recover all keybits. Note that in a typical known-plaintext or known-ciphertext
scenario up to 32 bit of the required stream might be known a priori. The follow-
ing sections will describe how to determine the required consecutive bitstream
by SPA.

5.2 Visual Inspection

Visual inspection and its utilization in an SPA attack on RSA are presented in
Sect. 2.2. However, the KeeLoq algorithm is extremely different from RSA and
there are no distinguishable functions called during the encryption or decryption
routines. As illustrated in Sect. 4.1, there are conditional branches depending on
the values of the state register in the software implementation of the KeeLoq

decryption recommended by Microchip. Typically, no difference in the power
patterns for taking or not taking these branches can be observed for a PIC mi-
crocontroller, as it mostly leaks the operands being processed, not the operations.
Hence, pinpointing the small variations of two or three instructions between two
rounds of the algorithm by visual inspection is a very challenging and sometimes
impossible task.

Fig. 3 shows power traces measured from commercial implementations of the
KeeLoq decryption on different PIC microcontrollers. Spending a lot of time

small small bigbig big bigsmall

(a)

small small big bigsmall small

(b)

(c)

Fig. 3. Visual inspection of power traces of the KeeLoq cipher.

and efforts with manually analyzing the details of the power consumption, in few
cases a distinguishable behavior can be spotted in the periodic power patterns
of the microcontroller, as illustrated in Fig.3(a) and Fig.3(b). If the difference in
these patterns would furthermore directly depend on the values of the status reg-
ister, a key recovery according to Sect. 5.1 could be possible. However, Fig. 3(c)
illustrates that in some cases no difference between the periodic patterns can
be detected by means of heuristic methods, even by averaging the traces as de-
tailed in Sect. 2.1. Note that Fig. 3 shows pure measurements without averaging,
directly sampled by the oscilloscope.

5.3 A Non-Heuristic Method for SPA

In the following, we will develop a non-heuristic method that allows for auto-
matically identifying differences in power traces - as required for an SPA - even
for those implementations in which a visual inspection is not effectual. First,
we examine the time-variations occurring during a KeeLoq decryption more
precisely, using the example of a program code proposed by Microchip. It will
turn out that the conclusions drawn from analyzing this code can be applied
to many different, unknown implementations of KeeLoq decryptions2 on PIC
microcontrollers.

Investigating the Code The duration of all conditional branches that take
place during the decryption is examined in Fig. 4 by comparing the number of
clock-cycles required for each instruction of a PIC microcontroller [11]. While
the decisions taken in the code excerpts (a), (c), (d), (e), (g), and (h) shown in
Fig. 4 do not affect the execution time, the number of cycles required for (b), (f),

2 In fact, the described method allows for extracting Kman from all implementations
we are aware of

1 0 = HOP3,3

1 2 0B: BTFSC HOP3,3

1 0 0C: MOVLW 10000B

2 2 sum

(a)

1 0 = HOP2,0

2 1 0E: BTFSS HOP2,0

0 2 0F: GOTO $+3

1 0 10: RLF MASK

1 0 11: RLF MASK

4 3 sum

(b)

1 0 = HOP1,0

1 2 12: BTFSC HOP1,0

1 0 13: RLF MASK

2 2 sum

(c)

1 0 = HOP4,1

1 2 15: BTFSC HOP4,1

1 0 16: IORLW 2

2 2 sum

(d)

1 0 = HOP4,6

1 2 17: BTFSC HOP4,6

1 0 18: IORLW 4

2 2 sum

(e)

6 4 2 0 = W Reg

2 2 2 2 19: ADDWF PC

0 0 0 1 1A: MOVLW 02EH

0 0 0 2 1B: GOTO T_END

0 0 1 0 1C: MOVLW 074H

0 0 2 0 1D: GOTO T_END

0 1 0 0 1E: MOVLW 05CH

0 2 0 0 1F: GOTO T_END

1 0 0 0 20: MOVLW 03AH

3 5 5 5 sum

(f)

1 0 = MASK

1 2 23: SKPZ

1 0 24: MOVLW 80H

2 2 sum

(g)

1 0 = KEY7,7

1 2 2F: BTFSC KEY7,7

1 0 30: SETC

2 2 sum

(h)

6=1 1 = CNT0

1 2 39: DECFSZ CNT0

2 0 3A: GOTO INLOOP

0 1 3B: DECFSZ CNT1

0 2 3C: GOTO OUTLOOP

0 1 02: MOVLW 48

0 1 03: MOVWF CNT0

3 7 sum

(i)

Fig. 4. Number of cycles required for the execution of an exemplary implementation
of the KeeLoq decryption, depending on conditional branches.

and (i) varies with the respective condition being fulfilled or not - hence the time
variations in different rounds are due to these three conditional branches. Table 1
summarizes the effect of the conditional branches on the difference in clock-cycles
for the execution of one KeeLoq round. The duration of the program code in
(f) and (i) of Fig. 4 can increase by a multiple of two cycles, depending on the
state of the checked register, and (b) can likewise increase the length of a round
by one cycle. As a consequence, taking the execution time of each round modulo
2 can reveal the result of the decision taken in (b), where the value of HOP2,0,
i.e., the 9th bit of the status register y8, is tested. It is hence possible to deduce
one bit of the status register from the duration of each round and, as described
in Sect. 5.1, recover the whole 64-bit secret key from the execution time of at
least 96 consecutive rounds3.

As shown in Sect. 5.2, visual inspection is not feasible for some implemen-
tations - even less can the length of each round be precisely detected. In the
following, we thus introduce a non-heuristic technique for determining the num-
ber of cycles in each round.

Power Leakage of PIC microcontrollers Each execution cycle of a PIC
microcontroller lasts four clock cycles [11], hence four peaks in a power trace
relate to one execution cycle. Fig. 5 shows peaks extracted from power traces

3 64 consecutive rounds may suffice if the ciphertext or the plaintext is known prior
to the attack

Table 1. Difference of the number of cycles depending on the conditional branches.

CNT0=1

HOP4,1=1

HOP2,0=1

Diff. of no. of cycles

and
mod 2

HOP4,6=1

✗ ✗ ✗ 2 0

✗ ✗ X 3 1

✗ X ✗ 0 0

✗ X X 1 1

X ✗ ✗ 6 0

X ✗ X 7 1

X X ✗ 4 0

X X X 5 1

(a) four peaks per execution cycle

(b) first of each four peaks (c) second of each four peaks

(d) third of each four peaks (e) fourth of each four peaks

Fig. 5. Peaks of a power consumption trace of a PIC microcontroller running KeeLoq.

of a PIC microcontroller running a KeeLoq decryption. Extracting all four
peaks of an execution cycle, as illustrated in Fig. 5(a), does not allow to locate
the rounds of the decryption algorithm. In an attempt to facilitate the round-
detection, only the first, second, third or fourth peak of each execution cycle are
taken into account to yield Fig. 5(b), (c), (d) and (e), respectively. While focusing
on the second or third peak does not improve the noticeability of the KeeLoq

rounds, confining the analysis to the first or the fourth peak of each execution
cycle, as shown in Fig. 5(b) and Fig. 5(e), allows for accurately distinguishing
the successive rounds.

Scrutinizing the Timing In order to pinpoint the duration of each round of
the algorithm, the cross-correlation between periodic patterns in the traces and
a reference pattern is computed similarly to [8]. Suppose the reference pattern
R = (r1, r2, . . . , rl) with a length of l which consists of the power-peaks of one

−0.3

0

0.3

0.6

0.9

0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1
49444546424745454645444645454444

Fig. 6. An example for the correlation coefficients in vector C .

particular round of the KeeLoq decryption. Furthermore, the vector containing
the power-peaks of a whole KeeLoq decryption, with a length of n, is denoted
by P = (p1, p2, . . . , pn). Then, a vector C showing the linear dependency between
R and each section of P can be computed as

C = (c1, c2, . . . , cn−l+1) ; ci = Correlation
(

R , (pi, pi+1, . . . , pi+l−1)
)
. (2)

As illustrated in Fig. 6, the rounds can be clearly identified by consecutive
maxima of C . The locations of these maxima reveal the exact length of each
round and hence, taking the length of each round modulo 2 discloses the content
of the state register and consequently the bits of the secret key, as described in
Sect. 5.1.

5.4 Attack

Following the above described approach all 64 bits of the secret key can be
recovered, but still there are three remaining problems:

i) Due to noise in the traces of the power-consumption the detection of the
length of individual rounds may fail, leading to an incorrect detection of
bits. Thus, a method to verify the recovered key bits would be convenient.

ii) The efficiency of the illustrated method depends strongly on the accuracy
and correctness of the reference pattern R . This demands for an in-depth
study on choosing an accurate reference pattern.

iii) Suppose that all 64 bits of the key are recovered correctly. Since the key-
bits are used periodically during the KeeLoq decryption and the attack
can be started at any point in time with respect to the beginning of the
decryption, the correct position of the recovered key bits in the secret key
is not clear. Thus, the correct order of the bits needs to found out of 64
different alternatives.

Error Correction Suppose all bits of the secret key are deduced with the
described attack and let Ŝ = {ŝi ; 1 ≤ i ≤ 528} be the resulting bitstream,

containing a part of the stream S of a decryption. The corresponding K̂ =
{k̂i ; 0 ≤ i ≤ 527} contains the key-bits computed from Ŝ. As each key bit is
used at least eight times - every 64 rounds of the decryption - the correct key

30

30

Fig. 7. Two exemplary reference patterns resulting in different correlation vectors C .

bits reappear in stream K̂. Let K̃i = (k̂i, k̂i+1, . . . , k̂i+63), 0 ≤ i ≤ 464, be a part

of K̂ with a length of 64 bits, then

∃i, j ; i 6= j , i = j (mod 64) , K̃i = K̃j .

Errors in the detection of the correct key-bits due to noise can hence be corrected
by a majority decision.

Generation of a Reference Pattern Since the characteristics of the power
consumption strongly depend on the device under test (DUT), the best basis
for the reference pattern is a part of the power peaks produced by the DUT
itself. As Fig. 5(b) illustrates, the durations of the rounds can be estimated by
visual inspection of a decryption. Comparing with the source code described in
Sect. 4.1 one can estimate that each round takes between 42 and 49 execution
cycles - a reference pattern with a length of approximately 30 cycles is hence
adequate. However, as the beginning and the end of a round can only be guessed,
the best position of the reference pattern in the power-peaks has to be found by
moving the window until C contains regular maximums with a similar amplitude.
In Fig. 7, two C vectors of the same power-peaks are plotted for two different
reference patterns - the vector on the left-hand side is more appropriate.

As detailed in Sect. 3.1, a device key Kdev is obtained by a KeeLoq decryp-
tion of the corresponding ID of a remote control. Suppose that Kdev is already
known from performing a DPA attack on the remote [5] and that K̃k contains

the correct bits of the secret master key. With K̃
(i)
k denoting a rotation of the

bits4 of K̃k by i times, where 0 ≤ i < 64, the correct secret key is found if

∃i ; f
(

eK
(i)
k

, ID
)

= Kdev,

where f denotes the key derivation function as detailed in Sect. 3.1. Hence, a
known device key Kdev can be used to verify the correctness of the revealed key
bits and furthermore simplifies to find the correct number of rotations i of K̃k.

4 The direction of the rotations is not important, as long as it remains the same.

Attack Results The power traces of several PIC microcontrollers, such as
PIC16C56 and PIC16F84A, were acquired using an Agilent Infiniium 54832D
digital oscilloscope with a sampling rate of 125MS/s by measuring the differen-
tial voltage of a 100Ω resistor inserted in the ground path. Using the presented
techniques we are able to extract the secret master key Kman of commercial
KeeLoq code hopping receivers from only one single power trace. The efficiency
of our attack is due to a software implementation leaking various key dependent
information, and due to the nature of the KeeLoq cipher, i.e., using the key
bits more than once.

6 Dealing with Interrupts

Most real-world implementations of the KeeLoq decryption algorithm are run-
ning on microcontrollers that are also responsible for other controlling tasks. In
garage door systems this could be controlling the motor of the garage door or
safety algorithms protecting users from injuries. These co-existing tasks of access
control and other functionality may interfere by means of interrupt calls leading
to unforeseen program flows. The resulting power traces prohibit averaging over
multiple measurements and hinder straightforward CPA and SPA of the imple-
mentation. In this section we describe how power traces can be preprocessed in
order to remove the power consumption of irrelevant program code inserted dur-
ing the execution of the algorithm to still ensure the feasibility of side channel
attacks.

Profiling A recent implementation of the KeeLoq decryption, running on the
8-bit PIC microcontroller of a commercial product, proved to be resistant to
both CPA and the SPA attack detailed above. Further investigations confirmed
the existence of a periodic pattern in the power consumption that appeared at
unpredictable positions, independent of the start of the decryption algorithm.
In order to remove the pattern, it was necessary to identify its exact length and
position. Alg. 2 allows to extract the required information.

Practical results for the profiling are depicted in Fig. 8. The given power-,
mean- and variance traces show the end of the KeeLoq decryption, which can
be identified as a fast changing pattern on the left of the top picture. The right
parts of the traces illustrate the situation after the microcontroller has finished

Algorithm 2 Profiling of Interrupted Traces

1. Measure a reasonable amount of power traces (100 traces were sufficient)
2. Identify prominent parts of the pattern to be removed by visual inspection and

select one occurrence as a template
3. Align all power traces on the first match of the template since the beginning of the

decryption, e.g., using least square comparison
4. Calculate mean and variance of each data point over all aligned traces

2.9 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99 3

x 10
5

0.15

0.2

0.25

0.3

Peak Number

M
ea

su
re

d
V

al
ue

Peak Trace

2.9 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99 3

x 10
5

0.2

0.25

0.3

Peak Number

M
ea

n

Mean Trace

2.9 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99 3

x 10
5

0.01

0.02

0.03

0.04

Peak Number

V
ar

ia
nc

e

Variance Trace

Fig. 8. A power trace with a periodic pattern (top), the mean of the aligned traces
(middle), and their variance (bottom).

the decryption. The mean and variance traces reveal the pattern contained in
all traces that is independent of the KeeLoq algorithm. The variance allows to
identify the extent and the position of the pattern, while the mean trace shows
an averaged instance of the pattern that can be used as template to identify
it. Note that the pattern occurs even after the KeeLoq algorithm has finished,
indicating its independency from the execution of the cipher.

Preprocessing For periodically occurring patterns, Alg. 3 provides a method
to clean the traces. A similar preprocessing can be applied in case of non-periodic
patterns in the power consumption, as long as they can be identified and charac-
terized during profiling. The exact position and length of the unwanted pattern
can again be found via the variance of adequately aligned traces.

Practical Results While an improved CPA on the clean traces now succeeds
with around 5000 power traces, we are again able to extract the master key from
a single trace using SPA. The methods described in this section can generally
be used to remove the effect of timer-based interrupts and inserted dummy
operations from power traces, as long as their patterns are prominent enough to
allow identification of their rough position.

Algorithm 3 Preprocessing of Interrupted Traces

1. Find the first occurrence of the pattern using least squares.
2. Jump to the end of the pattern, whose relative position is known from the profiling.
3. Save its absolute position in the data point index to Start.
4. From the beginning of the trace to its end calculate for each data point index:

RelPos = CurrentDataPointIndex − Start mod PeriodLength

5. For each point decide:
if RelPos ≤ (PeriodLength − PatternLength), append data point to NewTrace

if RelPos > (PeriodLength − PatternLength), discard data point

The PeriodLength and the PatternLength denote the least separation between identical
points of different instances of the pattern and the length of the pattern, respectively.

7 Comparison of DPA and SPA

The efforts for performing an SPA are significantly smaller than those for a DPA,
because the latter naturally requires acquiring many traces and a lot of memory
for storing and evaluating them. Analyzing commercial black-box implemen-
tations with DPA moreover poses the in practice sometimes difficult tasks of
triggering the oscilloscope and aligning the measurements accurately. The SPA
described in Sect. 5 requires neither alignment nor memory, as one measurement
starting at an almost arbitrary point5 during a decryption is sufficient for a full
key recovery. Furthermore, our proposed SPA requires no knowledge about nei-
ther the plaintext, nor the ciphertext of the attacked decryption, as all necessary
parameters for the SPA can be derived solely from the power measurements. A
DPA is clearly impossible under these premises.

The outcome, that conducting a DPA is difficult for an unknown implemen-
tation does not imply that the implementation is more secure. In the contrary,
it may turn out - as demonstrated in this paper - that an even simpler and much
more effective attack is applicable, due to data-dependent execution times in the
algorithm.

Implementing the cipher such that the duration of a table look-up takes
equally long for any input will most likely prevent from a key recovery with the
SPA as described in this paper. However, this approach cannot be recommended,
because it would simultaneously facilitate an extraction of the secret key via DPA
of the - now well aligned - measurements.

8 Conclusion

Obtaining the device key Kdev of a remote control by DPA of the hardware
implementation of KeeLoq is straightforward. However, recovering the man-
ufacturer key Kman from a software implementation of the cipher was still a
challenging task. In this paper, we developed an SPA targeting KeeLoq soft-
ware implementations on 8-bit PIC microcontrollers, making an extraction of

5 Any starting point that captures ≥ 96 rounds of KeeLoq is appropriate

Kman from commercial KeeLoq systems much more feasible: where thousands
of power traces were originally required to mount a successful DPA, now one
single measurement suffices to recover the secret key.

After an in-depth analysis of a reference implementation of KeeLoq, we
pinpointed a fatal vulnerability to SPA and exploited it to develop a very efficient
key-recovery attack that requires no prior knowledge about neither the plaintext
nor the ciphertext. The described approach includes a non-heuristic method
for automatically extracting the parameters required for the SPA from power
traces, and thus avoids tedious visual inspection. Our attack neither requires a
sophisticated measurement setup, nor any preprocessing steps to align or average
traces. We further detailed techniques for correcting errors, e.g., due to noisy
measurements, and how irrelevant program code inserted during the execution
of an algorithm can be removed a priori.

The feasibility of our attacks was demonstrated by successfully attacking sev-
eral commercial products based on different PIC microcontrollers. In all cases,
the efforts for extracting the correct Kman were reduced to evaluating one mea-
surement. To our knowledge, and without naming any manufacturers, the de-
scribed SPA can be applied to the vast majority of KeeLoq receivers in the
field. Therefore, it becomes practical for criminals to extract and collect master
keys of many manufacturers, and perform devastating attacks on KeeLoq RKE
systems.

The assumption that extracting the manufacturer key from the software run-
ning in a receiver is very demanding and it thus could be regarded as being
stored more securely than a device key of a remote control, does no longer hold.
With the developed SPA attack, the manufacturer key can be extracted even
much simpler than the device keys - a tragedy for the security of all owners of
KeeLoq-based RKE systems.

References

1. A. Bogdanov. Attacks on the KeeLoq Block Cipher and Authentication Systems.
In RFIDSec 2007. rfidsec07.etsit.uma.es/slides/papers/paper-22.pdf.

2. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, 2004.

3. N. T. Courtois, G. V. Bard, and A. Bogdanov. Periodic ciphers with small blocks
and cryptanalysis of keeloq. In Tatra Mountains Mathematical Publications, 2008.

4. N. T. Courtois, G. V. Bard, and D. Wagner. Algebraic and Slide Attacks on
KeeLoq. In FSE 2008, volume 5086 of LNCS, pages 97–115. Springer, 2008.

5. T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. T. M.
Shalmani. On the Power of Power Analysis in the Real World: A Complete Break
of the KeeLoq Code Hopping Scheme. In CRYPTO 2008, volume 5157 of LNCS,
pages 203–220. Springer, 2008.

6. S. Indesteege, N. Keller, O. Dunkelman, E. Biham, and B. Preneel. A Practical
Attack on KeeLoq. In EUROCRYPT 2008, volume 4965 of LNCS, pages 1–18.
Springer, 2008.

7. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO 1999,
volume 1666 of LNCS, pages 388–397. Springer, 1999.

8. T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Power Analysis Attacks of
Modular Exponentiation in Smartcards. In CHES 1999, volume 1717 of LNCS,
pages 144–157. Springer, 1999.

9. Microchip. AN642: Code Hopping Decoder using a PIC16C56. http://www.

keeloq.boom.ru/decryption.pdf.
10. Microchip. HCS301 KeeLoq Code Hopping Encoder Data sheet. http://ww1.

microchip.com/downloads/en/DeviceDoc/21143b.pdf.
11. Microchip. PIC16C5X Data Sheet. http://ww1.microchip.com/downloads/en/

DeviceDoc/30453d.pdf.
12. Webpage. Program Code for KeeLoq Decryption. http://www.pic16.com/bbs/

dispbbs.asp?boardID=27&ID=19437.

Appendix A: The KeeLoq Decryption Program Code

; DECRYPT using [Key7 . . . Key0]
; | HOP4 | HOP3 | HOP2 | HOP1 |<-- Feed

DECRYPT
00: MOVLW 11+1 ; OUTLOOP COUNTER
01: MOVWF CNT1 ; 11+1 TIMES

OUTLOOP
02: MOVLW 48 ; INLOOP COUNTER
03: MOVWF CNT0 ; 48 TIMES

INLOOP
04: CLRWDT ;
05: MOVFW CNT1 ;
06: XORLW 1 ;
07: SKPNZ ; LAST 48 LOOPS
08: GOTO ROT_KEY ; RESTORE THE KEY

09: CLRC ; CLEAR CARRY
0A: MOVLW 1 ; MASK = 1
0B: BTFSC HOP3,3 ; SHIFT MASK 4X
0C: MOVLW 10000B ; IF BIT 2 SET
0D: MOVWF MASK ;

0E: BTFSS HOP2,0 ; SHIFT MASK
0F: GOTO $+3 ; ANOTHER 2X
10: RLF MASK ; IF BIT 1 SET
11: RLF MASK ;

12: BTFSC HOP1,0 ; SHIFT MASK
13: RLF MASK ; 1X MORE IF BIT 0

14: MOVLW 0 ; TABLE INDEX = 0
15: BTFSC HOP4,1 ; IF BIT 3 SET
16: IORLW 2 ; TABLE INDEX += 2
17: BTFSC HOP4,6 ; IF BIT 4 SET
18: IORLW 4 ; TABLE INDEX += 4

19: ADDWF PC ; PC += TABLE INDEX

TABLE
1A: MOVLW 02EH ; BITS 4:3 WERE 00
1B: GOTO T_END ; END OF TABLE

1C: MOVLW 074H ; BITS 4:3 WERE 01
1D: GOTO T_END ; END OF TABLE

1E: MOVLW 05CH ; BITS 4:3 WERE 10
1F: GOTO T_END ; END OF TABLE

20: MOVLW 03AH ; BITS 4:3 WERE 11

T_END
21: ANDWF MASK ; ISOLATE THE
22: MOVLW 0 ; CORRECT BIT
23: SKPZ ;
24: MOVLW 80H ; W = NLF OUTPUT

25: XORWF HOP2,W ; W XOR= HOP2,7
26: XORWF HOP4,W ; W XOR= HOP4,7
27: XORWF KEY1,W ; W XOR= KEYREG1,7

28: MOVWF MASK ; FEEDBACK = BIT 7
29: RLF MASK ; CARRY = BIT 7

2A: RLF HOP1 ; SHIFT IN
2B: RLF HOP2 ; THE NEW BIT
2C: RLF HOP3 ;
2D: RLF HOP4 ;

ROT_KEY
2E: CLRC ; CLEAR CARRY
2F: BTFSC KEY7,7 ; IF BIT 7 SET
30: SETC ; SET CARRY

31: RLF KEY0 ; LEFT-ROTATE
32: RLF KEY1 ; THE 64-BIT KEY
33: RLF KEY2 ;
34: RLF KEY3 ;
35: RLF KEY4 ;
36: RLF KEY5 ;
37: RLF KEY6 ;
38: RLF KEY7 ;

39: DECFSZ CNT0 ;
3A: GOTO INLOOP ; INLOOP 48 TIMES

3B: DECFSZ CNT1 ;
3C: GOTO OUTLOOP ; OUTLOOP 12 TIMES
3D: RETLW 0 ; RETURN

