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Abstract. Nearly all of the currently used and well-tested signature
schemes (e.g. RSA or DSA) are based either on the factoring assumption
or the presumed intractability of the discrete logarithm problem. Fur-
ther algorithmic advances on these problems may lead to the unpleasant
situation that a large number of schemes have to be replaced with alter-
natives. In this work we present such an alternative – a signature scheme
whose security is derived from the hardness of lattice problems. It is
based on recent theoretical advances in lattice-based cryptography and
is highly optimized for practicability and use in embedded systems. The
public and secret keys are roughly 12000 and 2000 bits long, while the
signature size is approximately 9000 bits for a security level of around
100 bits. The implementation results on reconfigurable hardware (Spar-
tan/Virtex 6) are very promising and show that the scheme is scalable,
has low area consumption, and even outperforms some classical schemes.
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1 Introduction

Due to the yet unpredictable but possibly imminent threat of the construction
of a quantum computer, a number of alternative cryptosystems to RSA and
ECC have gained significant attention during the last years. In particular, it
has been widely accepted that relying solely on asymmetric cryptography based
on the hardness of factoring or the (elliptic curve) discrete logarithm problem is
certainly not sufficient in the long term [7]. This has been mainly due to the work
of Shor [34], who demonstrated that both classes of problems can be efficiently
attacked with quantum computers. As a consequence, first steps towards the
required diversification and investigation of alternative fundamental problems
and schemes have been taken. This has already led to efficient implementations
of various schemes based on multivariate quadratic systems [5, 3] and the code-
based McEliece cryptosystem [10, 35].
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† Work supported in part by the European Research Council.



Another promising alternative to number-theoretic constructions are lattice-
based cryptosystems because they admit security proofs based on well-studied
problems that currently cannot be solved by quantum algorithms. For a long
time, however, lattice constructions have only been considered secure for in-
efficiently large parameters that are well beyond practicability3 or were, like
GGH [14] and NTRUSign [16], broken due to flaws in the ad-hoc design ap-
proach [30]. This has changed since the introduction of cyclic and ideal lat-
tices [26] and related computationally hard problems like Ring-SIS [31, 22, 24]
and Ring-LWE [25] which enabled the constructions of a great variety of theo-
retically elegant and efficient cryptographic primitives.

In this work we try to further close the gap between the advances in theo-
retical lattice-based cryptography and real-world implementation issues by con-
structing and implementing a provably-secure digital signature scheme based on
ideal lattices. While maintaining the connection to hard ideal lattice problems
we apply several performance optimizations for practicability that result in mod-
erate signature and key sizes as well as performance suitable for embedded and
hardware systems.

Digital Signatures and Related Work. Digital signatures are arguably the most
used public-key cryptographic primitive in practical applications, and a lot of
effort has gone into trying to construct such schemes from lattice assumptions.
Due to the success of the NTRU encryption scheme, it was natural to try to
design a signature scheme based on the same principles. Unlike the encryption
scheme, however, the proposed NTRU signature scheme [18, 16] has been com-
pletely broken by Nguyen and Regev [30]. Provably-secure digital signatures were
finally constructed in 2008, by Gentry, Peikert, and Vaikuntanathan [13], and,
using different techniques, by Lyubashevsky and Micciancio [23]. The scheme
in [13] was very inefficient in practice, with outputs and keys being megabytes
long, while the scheme in [23] was only a one-time signature that required the
use of Merkle trees to become a full signature scheme. The work of [23] was
extended by Lyubashevsky [20, 21], who gave a construction of a full-fledged sig-
nature scheme whose keys and outputs are currently on the order of 15000 bits
each, for an 80-bit security level. The work of [13] was also recently extended by
Micciancio and Peikert [27], where the size of the signatures and keys is roughly
100, 000 bits.

Our Contribution. The main contribution of this work is the implementation
of a digital signature scheme from [20, 21] optimized for embedded systems.
In addition, we propose an improvement to the above-mentioned scheme which
preserves the security proof, while lowering the signature size by approximately a
factor of two. We demonstrate the practicability of our scheme by implementing
a scalable and efficient signing and verification engine. For example, on the low-
cost Xilinx Spartan-6 we are 1.5 times faster and use only half of the resources

3 One notable exception is the NTRU public-key encryption scheme [17], which has
essentially remained unbroken since its introduction.



of the optimized RSA implementation of Suzuki [38]. With more than 12000
signatures and over 14000 signature verifications per second, we can satisfy even
high-speed demands using a Virtex-6 device.

Outline. The paper is structured as follows. First we give a short overview on
our hardness assumption in Section 2 and then introduce the highly efficient and
practical signature scheme in Section 3. Based on this description, we introduce
our implementation and the hardware architecture of the signing and signature
verification engine in Section 4 and analyze its performance on different FPGAs
in Section 5. In Section 6 we summarize our contribution and present an outlook
for future work.

2 Preliminaries

2.1 Notation

Throughout the paper, we will assume that n is an integer that is a power of 2,
p is a prime number congruent to 1 modulo 2n, and Rpn

is the ring Zp[x]/(xn +
1). Elements in Rpn

can be represented by polynomials of degree n − 1 with

coefficients in the range [−(p − 1)/2, (p − 1)/2], and we will write Rpn

k to be a
subset of the ring Rpn

that consists of all polynomials with coefficients in the

range [−k, k]. For a set S, we write s
$← S to indicate that s is being chosen

uniformly at random from S.

2.2 Hardness Assumption

In a particular version of the Ring-SIS problem, one is given an ordered pair
of polynomials (a, t) ∈ Rpn × Rpn

where a is chosen uniformly from Rpn

and

t = as1 + s2, where s1 and s2 are chosen uniformly from Rpn

k , and is asked to
find an ordered pair (s′1, s

′
2) such that as′1 + s′2 = t. It can be shown that when

k >
√
p, the solution is not unique and finding any one of them, for

√
p < k � p,

was proven in [31, 22] to be as hard as solving worst-case lattice problems in ideal
lattices. On the other hand, when k <

√
p, it can be shown that the only solution

is (s1, s2) with high probability, and there is no classical reduction known from
worst-case lattice problems to finding this solution. In fact, this latter problem
is a particular instance of the Ring-LWE problem. It was recently shown in [25]
that if one chooses the si from a slightly different distribution (i.e., a Gaussian
distribution instead of a uniform one), then solving the Ring-LWE problem
(i.e., recovering the si when given (a, t)) is as hard as solving worst-case lattice
problems using a quantum algorithm. Furthermore, it was shown that solving the
decision version of Ring-LWE, that is distinguishing ordered pairs (a,as1 + s2)
from uniformly random ones in Rpn ×Rpn

, is still as hard as solving worst-case
lattice problems.



In this paper, we implement our signature scheme based on the presumed
hardness of the decision Ring-LWE problem with particularly “aggressive” pa-
rameters. We define the DCKp,n problem (Decisional Compact Knapsack prob-
lem) to be the problem of distinguishing between the uniform distribution over
Rpn × Rpn

and the distribution (a,as1 + s2) where a is uniformly random in

Rpn

and si are uniformly random in Rpn

1 . As of now, there are no known al-
gorithms that take advantage of the fact that the distribution of si is uniform
(i.e., not Gaussian) and consists of only −1/0/1 coefficients4, and so it is very
reasonable to conjecture that this problem is still hard. In fact, this is essentially
the assumption that the NTRU encryption scheme is based on. Due to lack of
space, we direct the interested reader to Section 3 of the full version of [21] for
a more in-depth discussion of the hardness of the different variants of the SIS
and LWE problems.

2.3 Cryptographic Hash Function H with Range Dn
32

Our signature scheme uses a hash function, and it is quite important for us that
the output of this function is of a particular form. The range of this function,
Dn

32, for n ≥ 512 consists of all polynomials of degree n − 1 that have all zero
coefficients except for at most 32 coefficients that are ±1.

We denote by H the hash function that first maps {0, 1}∗ to a 160-bit string
and then injectively maps the resulting 160-bit string r to Dn

32 via an efficient
procedure we now describe. To map a 160-bit string into the range Dn

32 for
n ≥ 512, we look at 5 bits of r at a time, and transforms them into a 16-digit
string with at most one non-zero coefficient as follows: let r1r2r3r4r5 be the five
bits we are currently looking at. If r1 is 0, then put a −1 in position number
r2r3r4r5 (where we read the 4-digit string as a number between 0 and 15) of
the 16-digit string. If r1 is 1, then put a 1 in position r2r3r4r5. This converts
a 160-bit string into a 512-digit string with at most 32 ±1’s.5 We then convert
the 512-bit string into a polynomial of degree at least 512 in the natural way by
assigning the ith coefficient of the polynomial the ith bit of the bit-string. If the
polynomial is of degree greater than 512, then all of its higher-order terms will
be 0.

3 The Signature Scheme

In this section, we will present the lattice-based signature scheme whose hard-
ware implementation we describe in Section 4. This scheme is a combination of

4 For readers familiar with the Arora-Ge algorithm for solving LWE with small noise
[2], we would like to point out that it is does not apply to our problem because this
algorithm requires polynomially-many samples of the form (ai,ais+ ei), whereas in
our problem, only one such sample is given.

5 There is a more “compact” way to do it (see for example [11] for an algorithm that
can convert a 160-bit string into a 512-digit one with at most 24 ±1 coefficients),
but the resulting transformation algorithm is quadratic rather than linear.



the schemes from [20] and [21] as well as an additional optimization that allows
us to reduce the signature length by almost a factor of two. In [20], Lyuba-
shevsky constructed a lattice-based signature scheme based on the hardness of
the Ring-SIS problem, and this scheme was later improved in two ways [21]. The
first improvement results in signatures that are asymptotically shorter, but un-
fortunately involves a somewhat more complicated rejection sampling algorithm
during the singing procedure, involving sampling from the normal distribution
and computing quotients to a very high precision, which would not be very well
supported in hardware. We do not know whether the actual savings achieved in
the signature length would justify the major slowdown incurred, and we do leave
the possibility of efficiently implementing this rejection sampling algorithm to
future work. The second improvement from [21], which we do use, shows how the
size of the keys and the signature can be made significantly smaller by changing
the assumption from Ring-SIS to Ring-LWE.

3.1 The Basic Signature Scheme

For ease of exposition, we first present the basic combination scheme of [20] and
[21] in Figure 1, and sketch its security proof. Full security proofs are available
in [20] and [21]. We then present our optimization in Sections 3.2 and 3.3.

Signing Key: s1, s2
$←Rpn

1

Verification Key: a
$←Rpn , t← as1 + s2

Cryptographic Hash Function: H : {0, 1}∗ → Dn
32

Sign(µ,a, s1, s2)
1: y1,y2

$←Rpn

k

2: c← H(ay1 + y2, µ)
3: z1 ← s1c + y1, z2 ← s2c + y2

4: if z1 or z2 /∈ Rpn

k−32, then goto step 1
5: output (z1, z2, c)

Verify(µ, z1, z2, c,a, t)
1: Accept iff

z1, z2 ∈ Rpn

k−32 and
c = H(az1 + z2 − tc, µ)

Fig. 1. The Basic Signature Scheme

The secret keys are random polynomials s1, s2
$← Rpn

1 and the public key is

(a, t), where a
$← Rpn

and t← as1 + s2. The parameter k in our scheme which
first appears in line 1 of the signing algorithm controls the trade-off between the
security and the runtime of our scheme. The smaller we take k, the more secure
the scheme becomes (and the shorter the signatures get), but the time to sign
will increase. We explain this as well as the choice of parameters below.

To sign a message µ, we pick two “masking” polynomials y1,y2
$← Rpn

k

and compute c ← H(ay1 + y2, µ) and the potential signature (z1, z2, c) where
z1 ← s1c+y1, z2 ← s2c+y2

6. But before sending the signature, we must perform

6 We would like to draw the reader’s attention to the fact that in step 3, reduction
modulo p is not performed since all the polynomials involved have small coefficients.



a rejection-sampling step where we only send if z1, z2 are both in Rpn

k−32. This
part is crucial for security and it is also where the size of k matters. If k is too
small, then z1, z2 will almost never be in Rpn

k−32, whereas if its too big, it will
be easy for the adversary to forge messages7. To verify the signature (z1, z2, c),

the verifier simply checks that z1, z2 ∈ Rpn

k−32 and that c = H(az1 + z2 − tc, µ).
Our security proof follows that in [21] except that it uses the rejection sam-

pling algorithm from [20]. Given a random polynomial a ∈ Rpn

, we pick two poly-

nomials s1, s2
$← Rpn

k′ for a sufficiently large k′ and return (a ∈ Rpn

, t = as′1+s′2)
as the public key. By the DCKp,n assumption (and a standard hybrid argument),
this looks like a valid public key (i.e., the adversary cannot tell that the si are

chosen from Rpn

k′ rather than from Rpn

1 ). When the adversary gives us signature
queries, we appropriately program the hash function outputs so that our signa-
tures are valid even though we do not know a valid secret key (in fact, a valid
secret key does not even exist). When the adversary successfully forges a new
signature, we then use the “forking lemma” [33] to produce two signatures of
the message µ, (z1, z2, c) and (z′1, z

′
2, c
′), such that

H(az1 + z2 − tc, µ) = H(az′1 + z′2 − tc′, µ), (1)

which implies that
az1 + z2 − tc = az′1 + z′2 − tc′ (2)

and because we know that t = as1 + s2, we can obtain

a(z1 − cs1 − z′1 + c′s1) + (z2 − cs2 − z′2 + c′s2) = 0.

Because zi, si, c, and c′ have small coefficients, we found two polynomials
u1,u2 with small coefficients such that au1 + u2 = 08 By [21, Lemma 3.7],
knowing such small ui allows us to solve the DCKp,n problem.

We now explain the trick that we use to lower the size of the signature
as returned by the optimized scheme presented in Section 3.3. Notice that if
Equation (2) does not hold exactly, but only approximately (i.e., az1 +z2−tc−
(az′1 + z′2 − tc′) = w for some small polynomial w), then we can still obtain
small u1,u2 such that au1 + u2 = 0, except that the value of u2 will be larger
by at most the norm of w. Thus if az1 + z2 − tc ≈ az′1 + z′2 − tc′, we will still
be able to produce small u1,u2 such that au1 + u2 = 0. This could make us
consider only sending (z1, c) as a signature rather than (z1, z2, c), and the proof
will go through fine. The problem with this approach is that the verification
algorithm will no longer work, because even though az1 +z2−tc ≈ az1−tc, the
output of the hash function H will be different. A way to go around the problem
is to only evaluate H on the “high order bits” of the coefficients comprising the
polynomial az1 + z2 − tc which we could hope to be the same as those of the
polynomial az1− tc. But in practice, too many bits would be different (because
of the carries caused by z2) for this to be a useful trick. What we do instead is

7 The exact probability that z1, z2 will be in Rpn

k−32 is
(

1− 64
2k+1

)2n

.
8 It is also important that these polynomials are non-zero.



send (z1, z
′
2, c) as the signature where z′2 only tells us the carries that z2 would

have created in the high order bits in the sum of az1 + z2 − tc, and so z′2 can
be represented with much fewer bits than z2. In the next subsection, we explain
exactly what we mean by “high-order bits” and give an algorithm that produces
a z′2 from z2, and then provide an optimized version of the scheme in this section
that uses the compression idea.

3.2 The Compression Algorithm

For every integer y in the range
[
−p−1

2 , p−12
]

and any positive integer k, y can

be uniquely written as y = y(1)(2k + 1) + y(0) where y(0) is an integer in the

range [−k, k] and y(1) = y−y(0)

2k+1 . Thus y(0) are the “lower-order” bits of y, and

y(1) are the “higher-order” ones9. For a polynomial y = y[0]+y[1]x+ . . .+y[n−
1]xn−1 ∈ Rpn

, we define y(1) = y[0](1) + y[1](1)x + . . . + y[n − 1](1)xn−1 and
y(0) = y[0](0) + y[1](0)x + . . .+ y[n− 1](0)xn−1.

The Lemma below states that given two vectors y, z ∈ Rpn

where the coef-
ficients of z are small, we can replace z by a much more compressed vector z′

while keeping the higher order bits of y + z and y + z′ the same. The algorithm
that satisfies this lemma is presented in Figure 5 in Appendix A.

Lemma 3.1. There exists a linear-time algorithm Compress(y, z, p, k) that for

any p, n, k where 2nk/p > 1 takes as inputs y
$← Rpn

, z ∈ Rpn

k , and with

probability at least .98 (over the choices of y ∈ Rpn

), outputs a z′ ∈ Rpn

k such
that

1. (y + z)(1) = (y + z′)(1)

2. z′ can be represented with only 2n+ dlog(2k + 1)e · 6knp bits.

3.3 A Signature Scheme for Embedded Systems

We now present the version of the signature scheme that incorporates the com-
pression idea from Section 3.2 (see Figure 2). We will use the following notation
that is similar to the notation in Section 3.2: every polynomial Y ∈ Rpn

can be
written as

Y = Y(1)(2(k − 32) + 1) + Y(0)

where Y(0) ∈ Rpn

k−32 and k corresponds to the k in the signature scheme in Figure
2. Notice that there is a bijection between polynomials Y and this representation
(Y(1),Y(0)) where

Y(0) = Y mod (2(k − 32) + 1),

and

Y(1) =
Y −Y(0)

2(k − 32) + 1
.

Intuitively, Y(1) is comprised of the higher order bits of Y.

9 Note that these only roughly correspond to the notion of most and least significant
bits.



Signing Key: s1, s2
$←Rpn

1

Verification Key: a
$←Rpn , t← as1 + s2

Cryptographic Hash Function: H : {0, 1}∗ → Dn
32

Sign(µ,a, s1, s2)
1: y1,y2

$←Rpn

k

2: c← H
(

(ay1 + y2)(1), µ
)

3: z1 ← s1c + y1, z2 ← s2c + y2

4: if z1 or z2 /∈ Rpn

k−32, then goto step 1
5: z′2 ← Compress (az1 − tc, z2, p, k − 32)
6: if z′2 = ⊥, then goto step 1
7: output (z1, z

′
2, c)

Verify(µ, z1, z
′
2, c,a, t)

1: Accept iff
z1, z

′
2 ∈ Rpn

k−32 and

c = H
(

(az1 + z′2 − tc)(1), µ
)

Fig. 2. Optimized Signature Scheme

The secret key in our scheme consists of two polynomials s1, s2 sampled

uniformly from Rpn

1 and the public key consists of two polynomials a
$← Rpn

and t = as1 + s2. In step 1 of the signing algorithm, we choose the “masking
polynomials” y1,y2 from Rpn

k . In step 2, we let c be the hash function value of
the high order bits of ay1 + y2 and the message µ. In step 3, we compute z1, z2
and proceed only if they fall into a certain range. In step 5, we compress the
value z2 using the compression algorithm implied in Lemma 3.1, and obtain a
value z′2 such that (az1 − tc + z2)(1) = (az1 − tc + z′2)(1) and send (z1, z

′
2, c) as

the signature of µ. The verification algorithm checks whether z1, z
′
2 are in Rpn

k−32
and that c = H

(
(az1 + z′2 − tc)(1), µ

)
.

The running time of the signature algorithm depends on the relationship of
the parameter k with the parameter p. The larger the k, the more chance that
z1 and z2 will be in Rpn

k−32 in step 4 of the signing algorithm, but the easier the
signature will be to forge. Thus it is prudent to set k as small as possible while
keeping the running time reasonable.

3.4 Concrete Instantiation

We now give some concrete instantiations of our signature scheme from Figure
2. The security of the scheme depends on two things: the hardness of the under-
lying DCKp,n problem and the hardness of finding pre-images in the random
oracle H10. For simplicity, we fixed the output of the random oracle to 160 bits
and so finding pre-images is 160 bits hard. Judging the security of the lattice
problem, on the other hand, is notoriously more difficult. For this part, we rely
on the extensive experiments performed by Gama and Nguyen [12] and Chen and
Nguyen [8] to determine the hardness of lattice reductions for certain classes of

10 It is generally considered folklore that for obtaining signatures with λ bits of security
using the Fiat-Shamir transform, one only needs random oracles that output λ bits
(i.e., collision-resistance is not a requirement). While finding collisions in the random
oracle does allow the valid signer to produce two distinct messages that have the
same signature, this does not constitute a break.



Table 1. Signature Scheme Parameters

Aspect Set I Set II

n 512 1024
p 8383489 16760833
k 214 215

Approximate signature bit size 8, 950 18, 800
Approximate secret key bit size 1, 620 3, 250
Approximate public key bit size 11, 800 25, 000

Expected number of repetitions 7 7

Approximate root Hermite factor 1.0066 1.0035
Equivalent symmetric security in bits ≈ 100 > 256

lattices. The lattices that were used in the experiments of [12] were a little differ-
ent than ours, but we believe that barring some unforeseen weakness due to the
added algebraic structure of our lattices and the parameters, the results should
be quite similar. We consider it somewhat unlikely that the algebraic structure
causes any weaknesses since for certain parameters, our signature scheme is as
hard as Ring-LWE (which has a quantum reduction from worst-case lattice
problems [25]), but we do encourage cryptanalysis for our particular parameters
because they are somewhat smaller than what is required for the worst-case to
average-case reduction in [37, 25] to go through.

The methodology for choosing our parameters is the same as in [21], and so
we direct the interested reader to that paper for a more thorough discussion. In
short, one needs to make sure that the length of the secret key [s1|s2] as a vector
is not too much smaller than

√
p and that the allowable length of the signature

vector, which depends on k, is not much larger than
√
p. Using these quantities,

one can perform the now-standard calculation of the “root Hermite factor” that
lattice reduction algorithms must achieve in order to break the scheme (see [12,
28, 21] for examples of how this is done). According to experiments in [12, 8] a
factor of 1.01 is achievable now, a factor of 1.007 seems to have around 80 bits
of security, and a factor of 1.005 has more than 256-bit security. In Figure 1, we
present two sets of parameters. According to the aforementioned methodology,
the first has somewhere around 100 bits of security, while the second has more
than 256.

We will now explain how the signature, secret key, and public key sizes are
calculated. We will use the concrete numbers from set I as example. The signature
size is calculated by summing the bit lengths of z1, z

′
2, and c. Since z1 is inRpn

k−32,
it can be represented by ndlog(2(k − 32) + 1)e ≤ n log k + n = 7680 bits. From
Lemma 3.1, we know that z′2 can be represented with 2n+ dlog(2(k− 32) + 1)e ·
6(k−32)n

p ≤ 2n+ 6 log(2k) = 1114 bits. And c can be represented with 160 bits,
for a total signature size of 8954 bits. The secret key consists of polynomials
s1, s2 ∈ Rpn

1 , and so they can be represented with 2dn log(3)e = 1624 bits, but
a simpler representation can be used that requires 2048 bits. The public key



consists of the polynomials (a, t), but the polynomial a does not need to be
unique for every secret key, and can in fact be some randomness that is agreed
upon by everyone who uses the scheme. Thus the public key can be just t, which
can be represented using dn log pe = 11776 bits.

We point out that even though the signature and key sizes are larger than
in some number theory based schemes, the signature scheme in Figure 2 is quite
efficient, (in software and in hardware), with all operations taking quasi-linear
time, as opposed to at least quadratic time for number-theory based schemes.
The most expensive operation of the signing algorithm is in step 2 where we need
to compute ay1 + y2, which also could be done in quasilinear time using FFT.
In step 3, we also need to perform polynomial multiplication, but because c is
a very sparse polynomial with only 32 non-zero entries, this can be performed
with just 32 vector additions. And there is no multiplication needed in step 5
because az1 − tc = ay1 + y2 − z2.

4 Implementation

In this section we provide a detailed description of our FPGA implementation
of the signature scheme’s signing and verification procedures for parameter set
I with about 100 bits of equivalent symmetric security. In order to improve
the speed and resource consumption on the FPGA, we utilize internal block
memories (BRAM) and DSP hardcores spanning over three clock domains. We
designed dedicated implementations of the signing and verification operation
that work with externally generated keys.

Roughly speaking, the signing engine is composed out of a scalable amount
of area-efficient polynomial multipliers to compute ay1 + y2. Fresh randomness
for y1,y2 is supplied each run by a random number generator (in this prototype
implementation an LFSR). To ensure a steady supply of fresh polynomials from
the multiplier for the subsequent parts of the design and the actual signing
operation, we have included a buffer of a configurable size that pre-stores pairs
(ay1+y2,y1||y2). The hash function H saves its state after the message has been
hashed and thus prevents rehashing of the (presumably long) message in each
new rejection-sampling step. The sparse multiplication of sc works coefficient-
wise and thus allows immediate testing for the rejection condition. If an out-
of-bound coefficient occurs (line 4 and 6 of Figure 2), the multiplication and
compression is immediately interrupted and a new polynomial pair is retrieved
from the buffer. For the verification engine, we rely on the polynomial multiplier
used to compute ay1+y2 twice as we compute az1+z

′

2 first, maintain the internal
state and therefore add t(−c) in a second round to produce the input for the
hash function. When signatures are fed into or returned by both engines, they
are encoded in order to meet the signature size (see Lemma A.2 for a detailed
algorithm).



4.1 Message Signing

The detailed top-level design of the signing engine is depicted in Figure 3. The
computation of ay1 + y2 is implemented in clock domain (1) and carried out
by a number of PolyMul units (three units are shown in the depicted setup).
The BRAMs storing the initial parameters y = y1||y2 are refilled by a random
number generator (RNG) running independently in clock domain (3) and the
constant polynomial a is loaded during device initialization. When a PolyMul

unit has finished the computation of r = ay1 +y2, it requests exclusive access to
the Buffer and stores r and y when free space is available. Internally the Buffer
consists of the two configurable FIFOs FIFO(r) and FIFO(y). As all operations
in clock domain (1) and (3) are independent of the secret key or message,
they are triggered when space in the Buffer becomes available. As described in
Section 3.4, the polynomial r = ay1 + y2 is needed as input to the hashing as
well as for the compression components and is thus stored in BRAM BUF(r) while
the coefficients of y1,y2 are only needed once and therefore taken directly out
of the FIFOs.

When a signature for a message stored in FIFO(m) is requested, the sampling-
rejection is repeated in clock domain (2) until a valid signature has been written
into FIFO(σ). The message to be signed is first hashed and its internal state
saved. Therefore, it is only necessary to rehash r in case the computed signature is
rejected (but not the message again). When the hash c is ready, the Compression
component is started. In this component, the values z1 = s1c+y1 and z2 = s2c+
y2 are computed column/coefficient-wise with a Comba-style sparse multiplier [9]
followed by an addition so that coefficients of z1 or z2 are sequentially generated.
Rejection-sampling is directly performed on these coefficients and the whole pair
(r,y) is rejected once a coefficient is encountered that is not in the desired range.
The secret key s = s1||s2 is stored in the block RAM BRAM(s) which can be
initialized during device initialization or set from the outside during runtime.
The whole signature σ = (z1, z

′

2, c) is encoded by the Encoder component in
order to meet the desired signature size (max. 8954 bits) and then written into
the FIFO FIFO(σ). The usage of FIFOs and BRAMs as I/O port allows easy
integration of our engine into other designs and provides the ability for clock
domain separation.

Polynomial Multiplication The most time-consuming operation of the signa-
ture scheme is the polynomial multiplication a ·y1 (with the addition of y2 being
rather simple). Recall that a ∈ Rpn

has 512 23-bit wide coefficients and that

y1 ∈ Rpn

k consists of 512 16-bit wide coefficients. We are aware that the selected
schoolbook algorithm (complexity of O(n2)) is theoretically inferior compared
to Karatsuba [19] (O(nlog 3)) or the FFT [29] (O(n log n)). However, its regular
structure and iterative nature allows very high clock frequencies and an area
efficient implementation on very small and cheap devices. The polynomial re-
duction with f = xn + 1 is performed in place which leads to the negacyclic
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Fig. 3. Block structure of the implemented signing engine. The three different clock
domains are denoted by (1), (2), (3).

convolution

r =

511∑
i=0

511∑
j=0

(−1)b
i+j
n caiyjx

i+j mod 512

of a and y1. The data path for the arithmetic is depicted in Figure 4(a). The
computation of aiyj is realized in a multiplication core. We avoid dealing with
signed values by determining the sign of the value added to the intermediate
coefficient from the MSB sign bit of yj and if a reduction modular xn + 1 is
necessary. As all coefficients of a are stored in the range [0, p − 1] they do not
affect the sign of the result. Modular reduction (see Figure 4(b)) by p = 8383489
is implemented based on the idea of Solinas [36] as 223 mod 8383489 = 5119 is
very small. For the modular addition of y2 the multiplier’s arithmetic pipeline
is reused in a final round in which the output of BRAM(a) is being set to 1 and
the coefficients of y2 are being fed into the BRAM(y) port. Each PolyMul unit
also acts as an additional buffer as it can hold one complete result of r in its
internal temporary BRAM and thus reduces latency further in a scenario with
precomputation. All in all, one PolyMul unit requires 204 slices, 3 BRAMs, 4
DSPs and is able to generate approx. 1130 pairs of (r,y) per second at a clock
frequency of 300 MHz on a Spartan-6.

4.2 Signature Verification

In the previous sections we discussed the details of the signing algorithm. When
dealing with the signature verification, we can reuse most of the previously de-
scribed components. In particular, the PolyMul component only needs a slight
modification in order to compute az1 + z

′

2 − tc which allows efficient resource
sharing for both operation. It is easy to see that we can split the computation
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Fig. 4. Implementation of PolyMul.

of the input to the hash instantiation into t1 = az1 + z
′

2, t2 = t(−c) + 0 and
t = t1 + t2. We see that the first equation can be performed by the PolyMul

core as a ∈ Rpn

and z1, z
′

2 ∈ R
pn

k . The same is true for the second equation
with t being in Rpn

and the inverted c being also in the range [−k, k] (c is
even much smaller). The only problem is the final addition of the last equation
as a third call to PolyMul would not work due to the fact that both inputs
are from Rpn

which PolyMul cannot handle. However, note that PolyMul stores
the intermediate state of the schoolbook multiplication in BRAM(r) but initial-
izes the block RAM with zero coefficients prior to the next computation of a
new ay1 + y2. As a consequence, PolyMul supports a special flag that triggers
a multiply-accumulate behavior in which the content of BRAM(r) is preserved
after a full run of the schoolbook multiplication (ay1) and an addition of y2.
Therefore, the intermediate values t1 and t2 are summed up in BRAM(r) and we
do not need the final addition. This enabled us to design a verification engine
that performs its arithmetic operations with just two runs of the PolyMul core.

5 Results and Comparison

All presented results below were obtained after post-place-and-route (PAR) and
were generated with Xilinx ISE 13.3. We have implemented the signing and
verification engine (parameter set I, buffer of size one) on two devices of the
low-cost Spartan-6 device family and on one high-speed Virtex-6 (all speed grade
−3). Detailed information regarding performance and resources consumption is
given in Table 2 and Table 3, respectively. For the larger devices we instantiate
multiple distinct engines as the Compression and Hash components become the
bottleneck when a certain amount of PolyMul components are instantiated. Note
also that our implementation is small enough to fit the signing (two PolyMul

units) or verification engine on the second-smallest Spartan-6 LX9.
When comparing our results to other work as given in Table 4, we conser-

vatively assume that RSA signatures (one modular exponentiation) with a key
size of 1024 bit and ECDSA signatures (one point multiplication) with a key
size of 160 bit are comparable to our scheme in terms of security (see Section 3.4
for details on the parameters). In comparison with RSA, our implementation on
the low-cost Spartan-6 is 1.5 times faster than the high-speed implementation
of Suzuki [38] – that still needs twice as many device resources and runs on the
more expensive Virtex-4 device. Note however, that ECC over binary curves is



Table 2. Performance of signing and verification for different design targets.

Aspect Spartan-6 LX16 Spartan-6 LX100 Virtex-6 LX130
S
ig

n
in

g

Engines/Multiplier 1/7 4/9 9/8
Total Multipliers 7 36 72
Max. freq. domain (1) 270 MHz 250 MHz 416 MHz
Max. freq. domain (2) 162 MHz 154 MHz 204 MHz
Throughput Ops/s 931 4284 12627

V
er

ifi
ca

ti
o
n Independent engines 2 14 20

Max. frequency domain (1) 272 MHz 273 MHz 402 MHz
Max. frequency domain (2) 158 MHz 103 MHz 156 MHz
Throughput Ops/s 998 7015 14580

Table 3. Resource consumption of signing and verification for different design targets.

Aspect Spartan 6 LX16 Spartan 6 LX100 Virtex 6 LX130

S
ig

n
in

g Slices 2273 11006 19896
LUT/FF 7465/8993 30854/34108 67027/95511
18K BRAM 29.5 138 234
DSP48A1 28 144 216

V
er

ifi
ca

ti
o
n Slices 2263 14649 18998

LUT/FF 6225/6663 44727/45094 61360/57903
18K BRAM 15 90 120
DSP48A1 8 56 60

very well suited for hardware and even implementations on old FPGAs like the
Virtex-2 [1] are faster than our lattice-based scheme. For the NTRUSign lattice-
based signature scheme (introduced in [16] and broken by Nguyen [30]) and the
XMSS [6] hash-based signature scheme we are not aware of any implementation
results for FPGAs. Hardware implementations of Multivariate Quadratic (MQ)
cryptosystems [5, 3] show that these schemes are faster (factor 2-50) than ECC
but also suffer from impractical key sizes for the private and public key (e.g.,
80 Kb for Unbalanced Oil and Vinegar (UOV)) [32]. While implementations of
the McEliece encryption scheme offer good performance [10, 35] the only imple-
mentation of a code based signature scheme [4] is extremely slow with a runtime
of 830 ms for signing.

6 Conclusion

In this paper we presented a provably secure lattice based digital signature
scheme and its implementation on a wide scale of reconfigurable hardware. With
moderate resource requirements and more than 12,000 and 14,000 signing and
verification operations per second on a Virtex-6 FPGA, our prototype imple-



Table 4. Implementation results for comparable signature schemes (signing).

Operation Algorithm Device Resources Ops/s

Our work - XC6SLX16 7465 LUTs/ 28 DSPs/
29.5 BRAMs

931

Our work - XC6SLX100 30854 LUTs/ 144
DSPs/ 138 BRAMs

4284

Our work - XC6VLX130 67027 LUTs/ 216
DSPs/ 234 BRAMs

12627

RSA Signature [38] RSA-1024;
private key

XC4VFX12-10 3937 LS/ 17 DSPs 548

ECDSA [15] NIST-P224;
point mult.

XC4VFX12-12 1580 LS/ 26 DSPs 2,739

ECDSA [1] NIST-B163;
point mult.

XC2V2000 8300 LUTs/
7 BRAMs

24,390

UOV-Signature [5] UOV(60,20) XC5VLX50-3 13437 LUTs 170,940

mentation even outperforms classical and alternative cryptosystems in terms of
signature size and performance.

Future work consists of optimization of the rejection-sampling steps as well
as evaluation of different polynomial multiplication methods like the FFT. We
also plan to investigate practicability of the signature scheme on other platforms
like microcontrollers or graphic cards.
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37. D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key encryption
based on ideal lattices. In ASIACRYPT, pages 617–635, 2009.

38. D. Suzuki. How to maximize the potential of FPGA resources for modular ex-
ponentiation. Cryptographic Hardware and Embedded Systems-CHES 2007, pages
272–288, 2007.

A Compression Algorithm

In this section we present our compression algorithm. For two vectors y, z, the
algorithm first checks whether the coefficient y[i] of y is greater than (p−1)/2−k
in absolute value. If it is, then there is a possibility that y[i] + z[i] will need to
be reduced modulo p and in this case we do not compress z[i]. Ideally there
should not be many such elements, and we can show that for the parameters
used in the signature scheme, there will be at most 6 (out of n) with high
probability. It’s possible to set the parameters so that there are no such elements,
but this decreases the efficiency and is not worth the very slight savings in the
compression.

Assuming that y[i] is in the range where z[i] can be compressed, we assign
the value of k to z′[i] if y[i](0) + z[i] > k, assign −k if y[i](0) + z[i] < −k, and 0
otherwise. We now move on to proving that the algorithm satisfies Lemma 3.1.

Lemma A.1. Item 1 of Lemma 3.1 holds.

Proof. Given in the full version of this paper.

Lemma A.2. Item 2 of Lemma 3.1 holds.



Compress(y, z, p, k)
1: uncompressed← 0
2: for i=1 to n do
3: if |y[i]| > p−1

2
− k then

4: z′[i]← z[i]
5: uncompressed← uncompressed+ 1
6: else
7: write y[i] = y[i](1)(2k + 1) + y[i](0) where −k ≤ y[i](0) ≤ k
8: if y[i](0) + z[i] > k then
9: z′[i]← k

10: else if y[i](0) + z[i] < −k then
11: z′[i]← −k
12: else
13: z′[i]← 0
14: end if
15: end if
16: end for
17: if uncompressed ≤ 6kn

p
then

18: return z′

19: else
20: return ⊥
21: end if

Fig. 5. The Compression Algorithm

Proof. If z[i]′ = 0, we represent it with the bit string ′00′. If z[i]′ = k, we
represent it with the bit string ′01′. z[i]′ = −k, we represent it with the bit
string ′10′. If z[i]′ = z[i] (in other words, it is uncompressed), we represent it
with the string ′11z[i]′ where z[i] can be represented by 2 log k bits (the ′11′

is necessary to signify that the following log 2k bits represent an uncompressed
value). Thus uncompressed values use 2 + log 2k bits and the other values use
just 2 bits. Since there are at most 6kn/p uncompressed values, the maximum
number of bits that are needed is

(2 + log 2k) · 6kn

p
+ 2

(
n− 6kn

p

)
= 2n+ dlog(2k + 1)e · 6kn

p
.

ut

Finally, we show that if y is uniformly distributed inRpn

, then with probabil-
ity at least .98, the algorithm will not have more than 6 uncompressed elements.

Lemma A.3. If y is uniformly distributed modulo p and 2nk/p ≥ 1, then the
compression algorithm outputs ⊥ with probability less than 2%.

Proof. The probability that the inequality in line 3 will be true is exactly 2k/p.
Thus the value of the “uncompressed′′ variable follows the binomial distribution
with n samples each being 1 with probability 2k/p. Since we will always set
n >> 2k/p, this distribution can be approximated by the Poisson distribution



with λ = 2nk/p. If λ ≥ 1 then the probability that the number of occurrences is
greater than 3λ is at most 2% (this occurs for λ = 1). Since we output ⊥ when
uncompressed > 6kn/p = 3λ, it is output with probability at most 2%. ut


